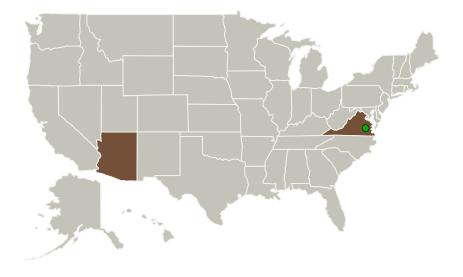
A Computational Tool for Helicopter Rotor Noise Prediction, Phase I



Completed Technology Project (2011 - 2011)

Project Introduction

This SBIR project proposes to develop a computational tool for helicopter rotor noise prediction based on hybrid Cartesian grid/gridless approach. The uniqueness of this approach is to achieve fully automated grid generation without grid overlapping. As a result, the resulting software will enjoy great ease of use with minimum human interference. There is no grid distortion in the majority of the computational domain. One can apply the best available flow solver which may not be possible to use in the unstructured grid approach. All are important for achieving accurate prediction of helicopter rotor aerodynamics and near-field acoustics. In Phase I, the high-speed impulsive noise will be first investigated and in Phase II, the blade-vortex interaction noise will be further explored.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
D&P, LLC	Lead Organization	Industry	Phoenix, Arizona
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

A Computational Tool for Helicopter Rotor Noise Prediction, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	2
Technology Areas	
Target Destinations	

Small Business Innovation Research/Small Business Tech Transfer

A Computational Tool for Helicopter Rotor Noise Prediction, Phase I

Completed Technology Project (2011 - 2011)

Primary U.S. Work Locations		
Arizona	Virginia	

Project Transitions

0

February 2011: Project Start

(

September 2011: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137811)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

D&P, LLC

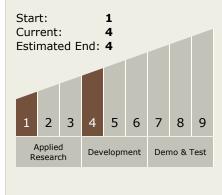
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Lei Tang

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

A Computational Tool for Helicopter Rotor Noise Prediction, Phase I

Completed Technology Project (2011 - 2011)

Technology Areas

Primary:

- TX15 Flight Vehicle Systems
 TX15.1 Aerosciences
 TX15.1.4 Aeroacoustics
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

